日本語AIでPubMedを検索
重症患者の重症急性腎障害予測のためのバイオマーカーに基づく決定木モデルの構築と検証
[Construction and validation of a decision tree based on biomarkers for predicting severe acute kidney injury in critically ill patients].
PMID: 32684220 DOI: 10.3760/cma.j.cn121430-20200509-00371.
抄録
目的:
重症患者の重症急性腎障害(AKI)を予測するためのバイオマーカーに基づく意思決定木の構築と評価
OBJECTIVE: To construct and evaluate a decision tree based on biomarkers for predicting severe acute kidney injury (AKI) in critical patients.
方法:
プロスペクティブ研究を実施した。2017年1月から2018年6月までに南医大小蘭病院の重症内科に入院していた重症患者を登録した。患者の臨床データを記録し、集中治療室(ICU)入院直後に血清シスタチンC(sCys C)、尿中N-アセチル-β-D-グルコサミニダーゼ(uNAG)などのバイオマーカーを設定し、エンドポイントを記録した。試験コホートは、2017年1月~12月の患者データを用いて設定した。決定木分類回帰木(CART)アルゴリズムを用い、バイオマーカーのベストカットオフ値を決定ノードとし、重症AKIを予測するためのバイオマーカー決定木モデルを構築した。決定木モデルの精度は、総合精度と受信機動作特性(ROC)曲線で評価した。2018年1月から6月までの患者データに確立した検証コホートを用いて、決定木の精度と予測能力をさらに検証した。
METHODS: A prospectively study was conducted. Critical patients who had been admitted to the department of critical care medicine of Xiaolan Hospital of Southern Medical University from January 2017 to June 2018 were enrolled. The clinical data of the patients were recorded, and the biomarkers, including serum cystatin C (sCys C) and urinary N-acetyl-β-D-glucosaminidase (uNAG) were established immediately after admission to intensive care unit (ICU), and the end points were recorded. The test cohort was established with patient data from January to December 2017. The decision tree classification and regression tree (CART) algorithm was used, and the best cut-off values of biomarkers were used as the decision node to construct a biomarker decision tree model for predicting severe AKI. The accuracy of the decision tree model was evaluated by the overall accuracy and the receiver operating characteristic (ROC) curve. The validation cohort, established on patient data from January to June 2018, was used to further validate the accuracy and predictive ability of the decision tree.
結果:
試験コホートでは263人の患者が登録され、そのうち57人が重度のAKIを発症した[腎臓病の第2期および第3期と定義。そのうち57例が重度のAKIを発症した(KDIGO(Kidney Disease: Improving Global Outcomes)基準の第2期および第3期と定義された)。重度のAKIを発症した患者は、重度のAKIを発症していない患者と比較して、年齢が高く[64歳(49歳、74歳)対52歳(41歳、66歳)]、急性期生理学・慢性健康評価II(APACHE II)スコアが高く[23歳(19歳、27歳)対15歳(11歳、20歳)]、重度のAKIを発症した患者の方が高齢であった。15(11、20)]、高血圧症、糖尿病等基礎疾患及び敗血症の発症率が高かった[64.9%対40.3%、28.1%対10.7%、63.2%対29.6%]、sCys C及びuNAG値が高かった[sCys C(mg/L):1.38(1.12、2.02)対0.79(0.67、0.98)、uNAG(U/mmol Cr):5.91(2.43、10.68)対2.72(1.60、3.90)]、入院死亡率及び90日死亡率が高かった(21.1%対4.4%、52.6%対13.1%)、ICU滞在期間が長かった(21.1%対4.4%、52.6%対13.2%、52.6%対13.1%)。1%)、ICU滞在期間が長く[日:6.0(4.0、9.5)対3.0(1.0、6.0)]、腎代替療法必要度が高く(22.8%対1.9%)、統計学的に有意な差があった(いずれもP<0.05)。ROC曲線解析の結果、重症AKIの予測におけるsCys CとuNAGのROC曲線下面積(AUC)は0.857[95%信頼区間(95%CI)は0.809~0.897]、0.735[95%CIは0.678~0.788]であり、最良のカットオフ値はそれぞれ1.05 mg/Lと5.39 U/mmol Crであった。バイオマーカーによって構築されたバイオマーカー決定木モデルの構造は直感的であった。重症AKIの予測精度は全体で86.0%、AUCは0.905(95%CIは0.863~0.937)、感度は0.912、特異度は0.796であった。130例の検証コホートにおいて,この決定木はAUCが0.909(95%CIは0.846-0.952),感度が0.906,特異度が0.816であり,全体の精度は81.0%と優れていた。
RESULTS: In test cohort, 263 patients were enrolled, of whom 57 developed severe AKI [defined as phase 2 and 3 of Kidney Disease: Improving Global Outcomes (KDIGO) criterion]. Compared with patients without severe AKI, severe AKI patients were older [years old: 64 (49, 74) vs. 52 (41, 66)], acute physiology and chronic health evaluation II (APACHE II) score were higher [23 (19, 27) vs. 15 (11, 20)], the incidence of hypertension, diabetes and other basic diseases and sepsis were higher (64.9% vs. 40.3%, 28.1% vs. 10.7%, 63.2% vs. 29.6%), the levels of sCys C and uNAG were higher [sCys C (mg/L): 1.38 (1.12, 2.02) vs. 0.79 (0.67, 0.98), uNAG (U/mmol Cr): 5.91 (2.43, 10.68) vs. 2.72 (1.60, 3.90)], hospital mortality and 90-day mortality were higher (21.1% vs. 4.4%, 52.6% vs. 13.1%), the length of ICU stay was longer [days: 6.0 (4.0, 9.5) vs. 3.0 (1.0, 6.0)], and renal replacement therapy requirement was higher (22.8% vs. 1.9%), with statistically significant differences (all P < 0.05). ROC curve analysis showed that the areas under ROC curve (AUC) of sCys C and uNAG in predicting severe AKI were 0.857 [95% confidence interval (95%CI) was 0.809-0.897)] and 0.735 (95%CI was 0.678-0.788), and the best cut-off values were 1.05 mg/L and 5.39 U/mmol Cr, respectively. The structure of the biomarker decision tree model constructed by biomarkers were intuitive. The overall accuracy in predicting severe AKI was 86.0%, and AUC was 0.905 (95%CI was 0.863-0.937), the sensitivity was 0.912, and the specificity was 0.796. In validation cohort of 130 patients, this decision tree yielded an excellent AUC of 0.909 (95%CI was 0.846-0.952), the sensitivity was 0.906, and the specificity was 0.816, with an overall accuracy of 81.0%.
結論:
重症患者の重症急性腎障害を予測するためのバイオマーカーに基づく決定木モデルは、精度が高く、直感的で実行可能であり、臨床判断や意思決定に有用である。
CONCLUSIONS: The decision tree model based on biomarkers for predicting severe AKI in critical patients is highly accurate, intuitive and executable, which is helpful for clinical judgment and decision.